Abstract Interpretation for Automatic Differentiation, Runtime Error detection and Security Analysis

Christèle Faure

AG60
Contents

• One framework: abstract interpretation of program

• Three applications:
 • Automatic Differentiation
 • Runtime Error detection
 • Automated Security analysis

• Conclusion

• Andreas
Abstract interpretation: practical view

“Executing” programs according to a particular semantic

- Concrete value \rightarrow abstract value
- Concrete execution \rightarrow abstract execution

So that the abstract execution gives correct information about all possible concrete executions
Abstract interpretation: theoretical view

Way of computing

upper (resp. lower) approximations

of the

least (resp. greatest) fixpoint

of a monotonic function

from a complete lattice to itself
Theoretical framework

- **Galois connection: concrete <-> abstract**

- **Abstract domains**
 - Finite / infinite
 - Relational / non relational

- **Abstraction**
 - Value -> set of values
 - Loop in the control -> Fixpoint iteration

- **Approximation**
 - Sources: Loop, compound object, union
 - Solutions: widening and narrowing operators
Example: Manual evaluation

\[x := 2; \quad x = 2 \]
\[y := 20; \quad y = 20 \]
\[\text{while } (x < y) \quad 2 < 20, 4 < 19, 8 < 18, 16 < 17, 32 < 16 \]
\[\{ x := 2 \times x; \quad x = 4, 8, 16, 32 \} \]
\[y := y - 1; \quad y = 19, 18, 17, 16 \]
Example: Abstract interpretation with Sign

Nearly no information

\[x := 2; \quad x > 0 \]
\[y := 20; \quad y > 0 \]
\[\text{while } (x < y) \]
\[\{ x := 2 \times x; \quad x > 0 \]
\[y := y - 1; \} \quad y \rightarrow T \]
Example: Abstract interpretation with interval

\[x := 2; \quad x \in [2, 2] \]
\[y := 20; \quad y \in [20, 20] \]

while \(x < y \)

\[[2, 2] < [20, 20] \quad [2, 4] < [19, 20] \quad [2, 8] < [18, 20] \]
\[[2, 16] < [17, 20] \quad [2, 32] < [16, 20] \]

\[\{ x := 2 \times x; \quad x \in [4, 4] \quad [4, 8] \quad [4, 16] \quad [4, 32] \} \quad y \in [19, 19] \quad [18, 19] \quad [17, 19] \quad [16, 19] \]

\[x \in [4, +\infty[\quad x \in 2\mathbb{Z} \cap [4..32] \]
\[y \in]-\infty, 19] \quad y \in [16..19] \]
Automatic Differentiation

- **Static analysis**
 - Information
 - Variable aliases
 - Variable activity
 - depend on active inputs
 - Impact active outputs
 - Variable « to be stored » status
 - Modified
 - Overwritten
 - Very simple abstract domain

- **Code transformation**
 - Over approximation => generated program time / memory consuming
 - Static / dynamic => automatic generation of operator overloading

- **Tools:** Odyssée -> Tapenade
Runtime Error detection

- **Information**
 - Alias analysis
 - Value analysis

- **Property check**

 \[
 x := 2; \quad x \in [2,2] \\
 y := 20; \quad y \in [20,20] \\
 \text{while } (x < y) \\
 \{ x := 2 \times x; \quad x \in [4,32] \\
 y := y - 1; \quad y \in [16,19] \\
 \} \quad (x \neq 0 \text{ && } y \neq 0) = \text{True} \\
 z := 1 / (x \times y); \quad \text{Division by zero}
 \]
Runtime Error detection (2)

- **Complex abstract domain**
 - Intervals
 - Congruencies
 - Polyhedrons

- **Static analysis**
 - Over approximation => properties (checks) not “proven”
 - Static / dynamic => automatic generation of unproven checks

- **PolySpace, Astrée, Frama C, Penjili, Fluctuat (numerical errors)**
Software security

• **Actual state**
 - > 200 static or static/dynamic tools
 - Find flaws/bugs/vulnerabilities in piece of software
 - Security analysis
 - Manual
 - Highly skilled people

• **Objective**
 - Computer aided software security analysis
 - Evaluating intrinsic exploitability of flaws
 - Potential attacks
 - Accessibility from inputs
 - Impact on output
 - ...
 - Evaluate effectiveness of protections
Conclusions

• **Static analysis**
 - Same problems (approximations => sometimes useless results)
 - Combine static / dynamic tools

• **Software security**
 - New field
 - Not yet structured (vocabulary / objectives / methods)
 - Exciting subject !
Andreas

- We met at Santa Fe with Nicole Rostaing (1996)
- Gave me a flavor of AD
 - Interesting / open field
 - Established community
- Came at INRIA for one sabbatical year
 - Lot of discussions on forward / backward ...
 - Merge static and dynamic AD
 - Checkpointing
 - Graphical description
 - First AD book
- Nice AD Workshop (2000)
- AD project at INRIA
I remember

- Apples and pieces of bred kept for later on
- Questions about french grammar
 - Why do you say “this” and not “that”?
 - What do you use « le présent du subjonctif » for?
 - I could not answer !!!!

Discovery of the Piggy-Back

- Industrial experiment with Odyssée on Alenia code
- One observation on a gnuplot figure of derivatives for me
- A whole theory for him
 - Convergence acceleration of fix point iteration
 - Piggy-back optimisation